elliptic paraboloid - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

elliptic paraboloid - Übersetzung nach russisch

QUADRIC SURFACE OF SPECIAL KIND
Paraboloid of revolution; Hyperbolic paraboloid; Circular paraboloid; Elliptic paraboloid; Hypar; Parabolloid; Elliptic Paraboloid; Pringle shape; Paraboloids
  • A hyperbolic paraboloid with lines contained in it
  • A hyperbolic paraboloid with hyperbolas and parabolas
  • elliptic paraboloid, parabolic cylinder, hyperbolic paraboloid
  • [[Polygon mesh]] of a circular paraboloid
  • Circular paraboloid
  • [[Pringles]] fried snacks are in the shape of a hyperbolic paraboloid.

elliptic paraboloid         

математика

эллиптический параболоид

paraboloid         

[pə'ræbəlɔid]

общая лексика

параболоид

параболоидный

Смотрите также

circular paraboloid; dipole-fed paraboloid; elliptic paraboloid; hyperboloid paraboloid; osculating paraboloid; paraboloid antenna; paraboloid of revolution; paraboloid surface

существительное

математика

параболоид

техника

параболический отражатель

hyperbolic paraboloid         

математика

гиперболический параболоид

Definition

Paraboloid
·noun The solid generated by the rotation of a parabola about its axis; any surface of the second order whose sections by planes parallel to a given line are parabolas.

Wikipedia

Paraboloid

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

Every plane section of a paraboloid by a plane parallel to the axis of symmetry is a parabola. The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane). The paraboloid is elliptic if every other nonempty plane section is either an ellipse, or a single point (in the case of a section by a tangent plane). A paraboloid is either elliptic or hyperbolic.

Equivalently, a paraboloid may be defined as a quadric surface that is not a cylinder, and has an implicit equation whose part of degree two may be factored over the complex numbers into two different linear factors. The paraboloid is hyperbolic if the factors are real; elliptic if the factors are complex conjugate.

An elliptic paraboloid is shaped like an oval cup and has a maximum or minimum point when its axis is vertical. In a suitable coordinate system with three axes x, y, and z, it can be represented by the equation

z = x 2 a 2 + y 2 b 2 . {\displaystyle z={\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}.}

where a and b are constants that dictate the level of curvature in the xz and yz planes respectively. In this position, the elliptic paraboloid opens upward.

A hyperbolic paraboloid (not to be confused with a hyperboloid) is a doubly ruled surface shaped like a saddle. In a suitable coordinate system, a hyperbolic paraboloid can be represented by the equation

z = y 2 b 2 x 2 a 2 . {\displaystyle z={\frac {y^{2}}{b^{2}}}-{\frac {x^{2}}{a^{2}}}.}

In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward).

Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second parabola.

Übersetzung von &#39elliptic paraboloid&#39 in Russisch